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Two-layer shallow-water flow without mixing is discussed. The existence of two types 
of waves (surface and internal) with rather different velocities of propagation leads to a 
numerical approach with two separate grids. For that purpose, the differential equations 
are written in a weak-interaction form. Particular attention is paid to the formulation of 
boundary conditions leading to a mathematically well-posed and numerically stable problem. 
A slightly modified leap-frog method is shown to satisfy the requirements. Some examples 
are given, including salt-water intrusion in a schematic estuary. 

1. PHYSICAL BACKGROUND 

Several important problems in hydraulics are associated with nearly horizontal 
flows having a more or less pronounced two-layer structure. Some examples are: 
intrusion and circulation of salt sea water in estuaries, circulation of cooling water 
when discharged into rivers or lakes, and flow patterns in lakes or seas with stratifica- 
tion. In most cases there is no exact separation between the layers; rather, a schemati- 
zation in terms of a two-layer system is made. From a physical point of view, it 
might be argued that a three-dimensional formulation is needed for such flows. 
However, an alternative two-dimensional method consuming less computer time is 
likely to remain attractive, even when time-dependent three-dimensional models come 
within the reach of computers. On the other hand, three-dimensional methods might 
meet with difficulties in resolving the steep gradients involved in a stratified flow 
structure. 

Some work on two-dimensional two-layer systems has already been published 
[1, 3, 7, 131, generally based on methods for homogeneous (one-layer) flow. The 
only discussion of any extent concerning the particular features of two-layer systems 
is in [7]. 

The present work is of an exploratory nature. In particular, any effect of mixing 
between the layers is neglected, although it is relevant in most of the potential applica- 
tions. Second, attention is confined to basins of a simple geometry, consisting of one 
or more rectangles. Extension to a more realistic geometry should preferably be based 
on a coordinate transformation, in order to retain the numerical advantages of 
straight boundaries. This paper is based on a more extensive report [12]. 
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2. MATHEMATICAL FORMULATION 

The differential equations for two-layer flow in shallow water are obtained by 
vertically integrating the Reynolds equations for turbulent flow in three dimensions 
over each of the two layers, as shown in Fig. 1. The assumptions are the same as those 
normally made for the shallow-water equations. In particular, the Boussinesq appro- 
ximation is made, stating that density variations are not important except in the 
pressure gradients. 

FIG. 1. Two-layer schematization. 

The resulting equations are: 

~+u,~+vl~+g~(al+a2+z~)-fv~+ +“Ep~lTix=O, 

2 + u,$ + v2 $$ + g & (( 1 - e) al + a2 + 4 - fv2 + T’2p~a2Tbz = 0, 

~+~~~+v~~+g~(a~+a2+z~)+~~+T”~~~~T” =0, 
1 

~+242~+v2-$+g~((1--)a,+a2+z~)+~2+TiYp~~V =0 

which can be combined in the quasi-linear form 

(1) 
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where 

v = (al , a2 , ul , u2 , vl , u2jT, 

aIs is the thickness of upper and lower layer, uIS2 and vIS2 are velocity components 
in each layer, x and y are horizontal coordinates, t is time, g is acceleration due to 
gravity, E is the relative density difference (p2 - pJpI , f is the Coriolis parameter, 
zb is the bottom level, T’, is the surface (wind) stress, Ti is the interfacial shear stress 
-&i(U2 + v2)l12(u, v), and Tb is the bottom shear stress &,(uS2 + v22)1/2(u2 , v2). 

The system (1) is hyperbolic under the condition 

u2 + v2 G egh, (2) 

where (u, v) = (u, - u1 , v2 - vl) is the relative velocity and h = a, + a, is the total 
depth. 

This condition can be interpreted as a physical stability condition: if it is violated, 
the equations have exponentially growing solutions. The matrices A and B are not 
symmetric and, more importantly, cannot simultaneously be brought into a symmetric 
form by a similarity transformation. 

The physical behavior of the system (1) is brought out by considering wavelike 
solutions of the equations with constant coefficients A and B, and H = 0: 

v - exp{i(k& + k,y - cd)}. (3) 

The velocities of propagation c = wk-l with k2 = kz2 + k,2 are the eigenvalues of the 
matrix k-l(kJ + k,B). A very good approximation for small values of E is: 

convective type: 

Cl = CL19 

c2 = p2; 

internal waves: 

G.~ = w2 + (1 - 4 p1 f Ml - a)(& - h 

surface waves: 

c~..s = up1 + (1 - a) p2 -f ( ghY2, 

where 
a = al/h, 

~1.2 = k-‘(k.u,,s + k,v,,,). 

(4) 

P2)2N1'2' , (5) 

(6) 

(7) 

The stability condition (2) ensures that the internal-wave speeds c,,, are real for 
all wavenumbers. The internal-wave speeds are a factor of 10 to 30 smaller than the 
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surface-wave speeds c~,~ , assuming representative values of E from 0.001 to 0.04. This 
difference in propagation speed is an invitation to use different numerical methods for 
surface and internal waves (Section 4). For that purpose, it is attractive to split the 
system of differential equations into two separate systems. In a linear version of the 
equations, this has been done by Veronis [l I]. The present nonlinear system does not 
appear to allow a complete separation, but a “weak interaction” form can be obtained 
by introducing the following dependent variables: 

external variables: 

h = a, + a2 , 

P = wl + w2 , 

4 = alvl + a2v2 ; 

internal variables: 

a = aIh-l, 

24 = 242 - 241 , 

v = v2 - Vl . 

These differ from the variables used by Veronis only by O(E). The following weakly 
coupled systems result : 

surface waves 

=- & {ha(l - a) us} - g {ha(l - a) UU} + ~g(l - a)h &- (ah), (8b) 

=- & {ha(l - a) uv} - g {ha(l - ‘a) v”} + Eg(l - a)h $- (ah); (8~) 

internal waves 
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-fv+S+ 7bx Tix 

p2(l - a)h - pha( 1 - a) = OY (9’4 

rbv Ti9J 

pz( 1 - u)h - pha(1 - a) = 
0. (9c) 

By differentiation, these equations can be brought in the quasi-linear form, to be used 
for theoretical analysis: 

2 + A, 2 + B, 2 + H, = S&s, vi>, 

2 + Ai 2 + Bi % + Hi = Si(v, , vi), 

where v, = (A, p, q)T and vi = (a, U, v)‘. 
The right-hand members 6,,$ of (8) and (9) are small in a certain sense, although it is 

not easy to show this in a mathematically formal way. Two special cases are worth 
mentioning: 

1. If E = 0 and u = v = 0, the system (9) degenerates and (8) becomes identical 
with the usual shallow-water equations. 

2. If zb + h = constant and p = q = 0, the “rigid-lid” approximation is 
obtained in which only (9) remains. This is effectively what has been done in, e.g., [4]. 
The resulting system is very similar to the shallow water equations, particularly if 
a,//2 is small. 

It is noted that Eqs. (8a)-(Sc) are in a conservative form except for the interaction 
terms S, . System (9) apparently cannot be written in such a form, unless the flow is 
exactly in one dimension (i.e., parallel to the x-axis). This is important for the represen- 
tation of discontinuous (shocklike) solutions (Section 5). Finally, it is noted that, 
unlike the complete system (l), A, and B, can be symmetrized simultaneously. The 
same applies to Ai and Bi . 

3. BOUNDARY CONDITIONS 

In most applications, curved boundaries occur. These may be closed boundaries in 
the form of coastlines, or open boundaries which terminate the model at a more 
or less arbitrary location. In the latter case, any effect of the “outside world” has 
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to be represented in the boundary conditions. Here, only straight boundaries are 
discussed, with the idea of transforming any curved boundaries into straight ones by a 
suitable coordinate transformation. There are some indications that this might be a 
more satisfactory procedure than the common approximation of a curved boundary 
by straight-line segments through the nearest grid points. Moreover, a theoretical 
analysis of the boundary-value problem is practicable only for straight boundaries. 
As indicated in [5], the analysis can be done for the restricted problem of linear 
equations for a semi-infinite region. Conditions for well-posedness can then be 
transferred to the original boundary-value problem. 

Without loss of generality, let us assume that a boundary is located at x = 0. The 
number of boundary conditions, necessary to determine the solution then equals 
the number of “in-going” characteristics [2, 51 obtained from (4), (5), and (6) with 
k, = 0. This leads to the conclusion that none to six boundary conditions are needed, 
depending on the signs of the characteristic speeds. 

Apart from these necessary conditions, an energy argument can give sticient 
conditions to have a well-posed problem (e.g., [lo]). As already mentioned, system (1) 
cannot be symmetrized, but the separate systems (8) and (9) can be written in a 
symmetric form, at least in the constant-coefficient case which is the case considered 
here. For example, 

v’ = Tvi , 
A’ = TAiT-I, 
B’ = TBiT-l 

with symmetric A’ and B’. For the internal waves, 

m{a(l - a>>-* 0 0 
T= 0 n uvrl 

0 0 mn-’ 

with m = {cg/z(egh - 12 - v2)}li2 and n = (Egh - v2)li2. 
Equation (9) becomes (disregarding Hi) 

Defining an internal product of two vector functions u and v on the region S as 

(u, v) = ./ls uTv dx dy 

and a norm 11 v II2 = (v, v), Eq. (10) yields, after premultiplication by v’*, 

$1) v’ II2 + [v’~A’v’]& + [~‘*B’v’];~~ = 0. 
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A sufficient condition for well-posedness is that each contribution from the boundaries 
is negative. For example, on the boundary x = 0 we should have 

F EZ [v'~A'v']~,,, < 0 (11) 

for homogeneous boundary conditions. A’ can be diagonalized by another trans- 
formation A' = RTDR and characteristic variables w are defined by w = Rv' = RTvi 
and we find 

F = c;w12 + cgws2 + c4wQ2. (12) 

Note that the first eigenvalue, which proves to be cl* = (2~ - 1) U, does not conform 
to c, or c2 , which is a consequence of neglecting the interaction terms. The following 
cases can be discerned to satisfy Eq. (II), depending on the parameter 

4 = (2a - l)u{a(l - a)(egh - U2)}-l/a 

which is the ratio between the term common to cQ and c4 (Eq. (5)) and the term occur- 
ring with opposite signs: 

1. Supercritical outflow fj < - 1 

c4 < c: < ca < 0, 

no boundary conditions. 

2. Subcritical outflow -1 < + < 0 

cp < c: < 0 < CQ. 

One boundary condition of the form 

w2 = DlWQ + pw1 

can be imposed under the restriction 

da” + (4 - 1) B” > -b(d - 1x6 + I>-‘. 

In particular 01 = /3 = 0 is allowed. 

3. Subcritical inflow 0 < (b < 1 

c4 < 0 < c: f c,. 

(13) 

Two boundary conditions of the form 

w2 = ctwg, Wl = B% 
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can be imposed under the restriction 

(14) 

4. Supercritical outflow 93 > 1 

All three characteristic variables wi are prescribed, which gives F = 0 for homogeneous 
boundary conditions. 

This set of boundary conditions is completely analogous to and can be used together 
with that for surface waves [lo] resulting from Eq. (8). The characteristics CT of (9) 
and the corresponding c$ of (8) differ from the correct values c, and c2 (Eq. (4)), 
Hence, by analogy, the boundary conditions associated with those two characteristics 
can be formulated as 

ifc, >Oandc, >0 : prescribe q and v; 
ifc,c, <Oandp >0: prescribe q; 

p GO: prescribe u; 
ifc, ,<Oandc, ,<O : no boundary condition. 

Due to neglecting the interaction terms, there is no guarantee that this set of boundary 
conditions is sufficient for well-posedness of system (1). However, we believe that it is 
the most sensible choice which can be made with the available information. 

The boundary conditions formulated in terms of characteristic variables wi have 
a clear physical meaning, at least for the components associated with c3 ,..,, cs . 
They can be identified with incident and reflected waves. The general rule is that 
incident waves are specified, either directly as a function of time (a = /? = 0) or in 
terms of outgoing waves. 

Finally, it must be stressed that the above analysis applies to the linearized equations 
only. It can be expected to be valid for the nonlinear case also, provided that the 
solution remains sufficiently smooth. However, there are at least two effects which may 
destroy smoothness: (1) discontinuous solutions can occur, and (2) short waves may 
be generated by nonlinear effects in a way similar to the energy cascade in turbulence. 
Nonlinear stability, therefore, remains an open question. 

4. NUMERICAL METHOD 

The choice of a numerical method is based on the effort required to obtain the 
solution with a certain accuracy, within the bounds of stability considerations. The 
effort includes not only computer requirements but also programming and therefore 
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is somewhat subjective. For a wave-propagation problem, accuracy can be formulated 
very well in terms of amplitude and phase errors, obtained from a linear analysis 
(see, e.g., [5]). If the (linearized) differential equations have solutions of the form 

v = v. exp{ik(x - ct)}, 

the solutions of the finite-difference equations can be written as 

v = v,, exp{ik(x - c,ct) - kct(2r)-l In d}, 

where d = 1 p 12nl(oE) is the wave damping factor per wave period, c, = -arg(p)(u&l 
is the relative velocity of propagation, .$ = kflx = 27r/N, Ax is the mesh width, 
At is the time step, u = cdt/dx is the Courant number, and p is the amplification 
factor. 

For simplicity, a one-dimensional case is considered, but the results are assumed 

4c 

30 

N 

t 
2c 

10 

0 

CN= Crank-Nicholsor 

0.5 1.0 

---+o- 

FIG. 2. Number of points per wavelength Nfor 1% accuracy with leap-frog and Crank-Nicholson 
methods. 
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to be valid in two dimensions at least in order of magnitude. For each finite-difference 
method, values of d and c, can be found as functions of u, N, and any other free 
parameters. If a certain accuracy limit E is set, so that ) 1 - d 1 < E and ) 1 - c, 1 < E, 
the required number N of points per wavelength can be plotted as a function of the 
Courant number cr (Fig. 2). 

Two typical second-order accurate methods are illustrated: the Crank-Nicholson 
method (CN) and the leap-frog method (LF). An advantage of the former is the 
possibility to use a Courant number exceeding unity. The price to be paid is an increase 
in the number of grid points per wavelength. Actually, if the effort is defined as the 
total number of computer operations, it is easy to show that it is inefficient to use a 
Courant number much higher than unity. Nevertheless, in the present case it is 
possible to solve the surface-wave equations by CN and the internal-wave equations 
by LF (analogous to [7]) so that both operate with the same time step dt. Another, 
more efficient, method is to use LF for both wave types but on different grids, as 
shown in Fig. 3. If the ratio of dt/dx for the two wave types is chosen to be of the 

mtornal grid point 

surface grid point 

surhlca-wove stop 

FIG. 3. Grids and interpolation (for simplicity y-directiqn is not shown). 

order of the ratio of the wave speeds, both work at approximately equal values of 
the Courant number, which is then limited only by stability considerations. This is an 
effective method, unless the mesh width is dictated by other considerations, such as 
representation of geometrical details. 

The procedure is to apply the leap-frog method to Eqs. (8) and (9) on two separate 
grids, interpolating the interaction terms at those grid points where they are not 
defined (Fig. 3). A linear interpolation procedure is chosen, which formally destroys 
second-order accuracy, but for practical values of the mesh width the first-order 
interpolation error is not important compared to the second-order discretization error. 

It is relatively simple to show that the leap-frog method is stable with closed bounda- 
ries, under the usual condition 

2 I Glmx 1 &/Ax < 1 (Ax = dy) (15) 

which is 21ja times more restrictive than the condition resulting from a Von Neumann 
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stability analysis for the pure initial-value problem. With open boundaries, the leap- 
frog method may be unstable [8]. To overcome this difficulty, the following modifica- 
tion is used [6, 91: 

where 

D,tv = {v(x, t + At) - v(x, t - A t)}(2A t)-‘, 

9 = &{v(x, t + At) + v(x, t - At)}, 
(17) 

Qzv = {v(x + Ax, t) - v(x - Ax, t)}(2Ax)-l (x > Ax) 

= (v(x + Ax, t) - v(x, t)} Ax-l (x = Oh 

and Q1= is the symmetric part of the operator Q3: (similar for Q3. It can be shown by a 
standard argument [8] that this method is stable for linear equations under condition 
(15) and assuming the continuous problem to be wellposed, which is the case if the 
boundary conditions are treated as discussed in the preceding section. The operator 
Q 1X involves only points on the boundary x = 0 and at x = Ax, so that implicit 
equations result from Eq. (16) at the boundaries only, involving not more than two 
grid points at a time. These implicit equations are nonlinear, but they can be linearized 
in each time step without affecting the accuracy. 

A less desirable property of the leap-frog method is the occurrence of undamped 
parasitic solutions with a period 2At, which may give rise to a “time splitting” 
phenomenon. In one-dimensional problems, this is associated with short waves 
(wavelength 2Ax). In two dimensions, short period waves are also possible with a 
larger wavelength. A wave with an amplification factor p = -1 can occur if 

det(iA sin t + iB sin 7)) = 0 

and for relatively long waves (5 = k, Ax and 7 = k, Ay small) this happens if 

i.e., for waves propagating at right angles to the flow vector. A spatial dissipation 
process scarcely affects such waves, so that the only way to suppress them appears 
to be a time-averaging process every nth time step. This turns out to be necessary in 
some of the applications. It must be borne in mind that this averaging process, 
together with the associated restart procedure, does affect accuracy of the method, but 
this is not elaborated here. 

The interface may intersect the bottom (a = 1) or the free surface (a = 0), thus 
separating two-layer regions from one-layer regions. Unlike some meteorological 
applications (such as [4]) where the surface front is quite important, in most hydraulic 
applications it is sufficient to have the approximate position of such fronts. 
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For that purpose, it is noted that Eqs. (8) and (9) are valid formally if a r-z 0 or 1, 
together with u = u = 0, provided the bottom and interface stresses vanish. Therefore, 
a very simple method has been used by setting a to one of its extreme values 0 or 1 
whenever it exceeds these, and setting u = ZI = 0 at the same time. In a very thin 
layer near these limits, the stresses are multiplied by a function of the layer thickness a 
which forces them to zero if a = 0 or 1. In the examples shown in this paper, this 
method works well in the sense that errors in the overall mass balance do not exceed 
1 or 2 %. However, on a closer examination of the procedure, it is seen that the local 
continuity errors are systematic and indeed long-term computations with a one- 
dimensional variant of the model have shown that the overall mass balance can be 
violated quite seriously. For the leap-frog method, or any other explicit method, no 
method of treating the surface fronts in a mass-conserving way, simpler than using 
frontmarkers as in [4] has yet been found. 

5. APPLICATION 

The examples discussed here do not serve to prove the correctness of the results, 
but rather to indicate the possibilities. In addition, some mathematical checks have 
been made for situations in which an (approximate) analytical solution is available, 
such as linear wave propagation and one-dimensional steady flow under wind influ- 

300- 
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200- 

100 - 

o l-d (two surfaca) / 

x 2-d,flow in x-diraction 
. 2-d,flow under 45. 

/ 

/ 

/ 

A thaory 

/” 

- t (S) 
10 

FIG. 4. Path of a discontinuity in the interface, according to theory and to l-d and 2-d com- 
putations. 
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ence [12]. In all the examples shown, boundaries parallel to the x-axis are vertical 
walls, on which the normal component of velocity is zero. 

An example of some theoretical interest is the propagation of internal discontinuities. 
The one-dimensional form of Eq. (9) allows weak solutions with discontinuities, the 
propagation speed of which can be derived from integral relations. For an internal 
front advancing over a stationary layer (a = a,, u = TV = 0 ahead of the front, 
a = a, behind) the result is 

c = a+(1 - a+)(Egh)1/2{a+(l - a+) + (a+ - #(u+ - a,)}-112 (18) 

in reasonable agreement with measurements. In Fig. 4 some numerical experiments 
are compared with the theoretical value of Eq. (18). They include one-dimensional 
computations and two-dimensional cases in which the flow is either in the x-direction 
or at 45” to it. In the latter case, the nonconservative form of the equations (cf. 
Section 2) shows up and some difficulties might be expected. 

As seen from Fig. 4, however, there is no sign of disagreement with the theory, at 
least for the rather crude schematization used here. A fourth-order dissipation process 
in both x- and y-directions has been applied after each time step. No time averaging 
has been necessary. 

As an example of a practically important case, consider an estuary as shown in 
Fig. 5. At x = 0, the area is connected to the open sea, from which a running tidal 

tldol boundary 

fresh 

I 

nvor 
inflow 

Torn 

FIG. 5. Schematic estuary. 

wave is assumed to come in, propagating in the x-direction. At x = 40 km, a river 
flows into the basin. Its discharge and water depth far upstream are assumed to be 
constant. The salt wedge is assumed not to reach the upstream boundary. Boundary 
conditions, applied at x = 0 are, 

with 

P - PO -PIN) + {--P/H + (&m1’2Hh - ho - hWN = 0, 

(A(1 - A)}‘/“(egH - U2)-1@ - Uo) - (a - a,) = 0 

(19) 

(20) 

4(t) = (1 - exp(-(t/T1)2)} sin (2rt/T). 
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TIt!E 115200. 

TINE 106Ocn 
TIE 129600. 

FIG. 6. Interface position in estuary of Fig. 5 at 2-h intervals during the third tidal cycle. 



TWO-DIMENSIONAL TWO-LAYER FLOW 183 

Quantities in Eqs. (19) and (20) indicated by capitals are evaluated at the central 
time level of the leap-frog scheme so that linear boundary conditions result. At the 
upstream boundary the condition corresponding to (19) is 

p - pr - v-w + ( gW2>@ - h,) = 0, (21) 

where p7 and h, are discharge and depth far upstream. Where necessary, at in-flow 
q = 0 or v = 0 is applied according to Section 3. Some numerical data are: 

h, = 10m T = 0.45 x lo5 s At =9os 
hl = 0.75 m Tl =2 x 104s dx=20OOm 
p. = - 1.667 m2s-l f = IO-4 s-1 dy =2OOOm. 

PI = hd gho)l” E = 0.04 

h, = 10m 
p7 = -5 m2s1 
240 = 0.5555 

a, = 0.3 

ki = O-4 X 10m3 

kb = 0.4 x 1O-2 
7, = 0 

A common grid is used for surface and internal waves in order to have a reasonable 
resolution for both. Time-averaging is applied every hour (40 time steps); otherwise 
quite large oscillations are obtained, particularly in the internal variables. As an 
initial condition, an estimated equilibrium flow without tide is used. After a few 
tidal cycles, an approximately periodic flow is produced which is practically indepen- 
dent of the initial condition. Figure 6 shows some pictures of the interface position 
during the third tidal cycle. Quantitative conclusions cannot be drawn from the 
results but they are reasonable in a qualitative sense. 

The example of Figs. 5 and 6, comprising about 160 grid points and 1500 time 
steps took about 1000 s CPU time on a CDC 6600, corresponding to about 1500 
(variables) x (grid points) x (time steps)/s CPU time. No attempt was made to optimize 
the program. 

6. CONCLUSION 

A formulation and analysis have been given for two-layer shallow-water flow 
without mixing. Although the behavior of such a system is analogous to homogeneous 
shallow-water flow, some differences have been put forward which influence the choice 
of a numerical method. The velocities of propagation of surface and internal waves 
differ by an order of magnitude which leads to the application of two separate grids. 
A weak-interaction form of the equations makes this possible. Particular attention 
has been given to the boundary conditions, concerning both the number and the type 
of conditions leading to a well-posed problem, and to numerical stability. Because 
of the asymmetry of the equations, a rigorous analysis has not been possible, but 

sS1/33/2-3 
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useful indications are obtained from the two subsystems with interaction terms 
neglected. The results are confirmed by some numerical tests which yield qualitatively, 
and in some simple cases also quantitatively, useful results. 

A comprehensive verification of the mathematical formulation has not yet been 
done. Important difficulties are not to be expected in the two-layer model as such, 
but rather in the semiempirical terms representing surface, bottom, and interfacial 
shear stress. Moreover, in most practical applications, mixing may be important 
which introduces additional mass exchange coefficients. Numerically, this means that 
two additional transport equations for the concentrations in the two layers have to be 
solved. As an additional complication, it may be necessary from a physical point of 
view to introduce diffusion and viscous terms to account for horizontal exchange of 
mass and momentum. This changes the type of differential equations from hyperbolic 
to (incompletely) parabolic but it is believed that in such a case similar techniques 
to those described in this paper can still be used. 
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